OPTIMASI CONVOLUTION NEURAL NETWORK UNTUK DETEKSI COVID-19
DOI:
https://doi.org/10.37971/radial.v10i2.299Keywords:
CNN, AlexNet, MobileNetV2, Covid-19Abstract
Abstrak: Optimasi Convolution Neural Network Untuk Deteksi Covid-19. Kondisi pandemi seperti sekarang ini diperlukan sebuah algoritma pembelajaran mesin untuk mendeteksi covid-19 secara otomatis berdasarkan pada gambar rontgen dada guna memudahkan dalam mambantu pengambil keputusan. Penelitian ini ingin membandingkan arsitektur CNN AlexNet dan MobileNetV2 untuk mendeteksi (a) covid-19, (b) lung opacity, (c) normal, (d) viral pneumonia. Data himpunan rontgen dada yang digunakan sejumlah 4000 yang berasal dari kaggle.com, 0.8 data dibagi untuk pelatihan sedangkan 0.2 nya digunakan untuk pengujian. Optimizer yang digunakan yaitu keras SGD momentum, dengan nilai learning rate 0.005 dan momentum 0.9, serta epoch 50. Ukuran gambar untuk input yaitu 224x224 serta ukuran batch 32. Hasil optimasi dari kedua algoritma tersebut yaitu, MobileNetV2 lebih baik untuk mendeteksi covid-19 dengan nilai akurasi presisi mencapai 99%. Penelitian selanjutnya dapat membandingkan algoritma CNN yang lainnya serta data himpunan yang lebih banyak.
Kata kunci: CNN; AlexNet; MobileNetV2; Covid-19
Abstract: Convolution Neural Network Optimization for Covid-19 Detection. In the current pandemic conditions, a machine learning algorithm is needed to detect COVID-19 automatically based on chest X-ray images to make it easier to assist decision makers. Aim study be disposed for compare the architecture of CNN AlexNet and MobileNetV2 to detect (a) covid-19, (b) lung opacity, (c) normal, (d) viral pneumonia. The data set of chest X-rays used are 4000 from kaggle.com, 0.8 of the data is shared for training while 0.2 is used for testing. The optimizer used is hard SGD momentum, with a value of leaning rate 0.005 and momentum 0.9, and epoch 50. The image size for the input is 224x224 and the batch size is 32. The optimization results from the two algorithms are, MobileNetV2 is better for detecting covid-19 with an accuracy value The precision reaches 99%. Future research can compare other CNN algorithms and larger data sets.
Keywords: CNN; AlexNet; MobileNetV2; Covid-19