PENILAIAN TERHADAP KEANDALAN BANGUNAN GEDUNG PADA BANGUNAN GEDUNG DI UNIVERSITAS NEGERI GORONTALO

Disusun Oleh:

Kalih Trumansyahjaya

Dosen Program Studi Arsitektur, Fakultas Teknik Universitas Negeri Gorontalo (UNG) INDONESIA

trumansyahjaya@gmail.com

ABSTRAK

Berdasarkan UU No. 28 tahun 2002 tentang bangunan gedung dalam pasal 3 menyatakan bahwa untuk mewujudkan bangunan gedung yang fungsional dan sesuai dengan tata bangunan gedung yang serasi dan selaras dengan lingkungannya, harus menjamin keandalan bangunan gedung dari segi keselamatan, kesehatan, kenyamanan dan kemudahan.

Kondisi yang ada sekarang ini, masih banyak bangunan gedung yang runtuh sebagian atau seluruhnya sebagai dampak yang ditimbulkan akibat bencana alam seperti angin kencang, gempa bumi, tanah longsor, perubahan fungsi dan lain sebagainya yang akibat oleh kegagalan struktur, oleh karena itu diperlukan adanya pemeriksaan keandalan bangunan gedung baik bertingkat maupun tidak bertingkat.

Memperhatikan hal tersebut diatas serta yang disyaratkan dalam UU No. 28 Tahun 2002 dan PP No. 36 tahun 2005 perlu dilakukan tindak lanjut dari kondisi tersebut dalam bentuk pemeriksaan keandalan bangunan gedung untuk mengetahui tingkat keandalan sebagai dasar awal pertimbangan lebih lanjut dalam menerbitkan Sertifikat Laik Fungsi Bangunan Gedung oleh Pemerintah Daerah

Kata Kunci: Keandalan Bangunan Gedung

PENDAHULUAN

Pada hakekatnya pembangunan nasional bertujuan untuk meningkatkan kesejahteraan bagi masyarakat secara adil dan merata, memberikan nilai tambah bagi masyarakat sebagai mahluk sosial dalam menjalani kehidupan dan penghidupan yang lebih baik. Untuk mewujudkan pembangunan yang adil dan merata tersebut bukanlah suatu hal yang sederhana, apalagi mengingat pola peneyebaran penduduk yang belum berimbang, mobilitas penduduk dari desa ke kota yang masih cukup tinggi, dan bahkan dalam dua dasa warsa terakhir penyebaran tersebut lebih terkonsentrasi pada pusat-pusat kegiatan di perkotaan.

Dalam menjamin kelangsungan dan

peningkatan kehidupan serta penghidupan penghuninya serta mewujudkan bangunan gedung yang fungsional, andal, berjati diri serta seimbang, serasi dan selaras dengan lingkungannya perlu adanya suatu pengaturan yang menjamin keandalan bangunan gedung.

Berdasarkan UU No. 28 tahun 2002 tentang bangunan gedung dalam pasal 3 menyatakan bahwa untuk mewujudkan bangunan gedung yang fungsional dan sesuai dengan tata bangunan gedung yang serasi dan selaras dengan lingkungannya, harus menjamin keandalan bangunan gedung dari segi keselamatan, kesehatan, kenyamanan dan kemudahan.

Kemudian dipertegas lagi dalam PP No. 36 Tahun 2005 tentang Peraturan Peiaksanaan Undang-Undang No. 28 Tahun 2005 tentang Bangunan Gedung, pasal 16 ayat (1) menyatakan bahwa keandalan bangunan gedung adalah keadaan bangunan gedung yang memenuhi persyaratan keselamatan, kesehatan, kenyamanan, dan kemudahan bangunan gedung sesuai dengan kebutuhan fungsi yang telah ditetapkan.

Kondisi yang ada sekarang ini, masih banyak bangunan gedung yang runtuh sebagian atau seluruhnya sebagai dampak yang ditimbulkan akibat bencana alam seperti angin kencang, gempa bumi, tanah longsor, perubahan fungsi dan lain sebagainya yang akibat oleh kegagalan struktur, oleh karena itu diperlukan adanya pemeriksaan keandalan bangunan gedung baik bertingkat maupun tidak bertingkat.

Memperhatikan hal tersebut di atas serta yang disyaratkan dalam UU No. 28 Tahun 2002 dan PP No. 36 Tahun 2005, perlu dilakukan tindaklanjut dari kondisi tersebut dalam bentuk pemeriksaan keandalan bangunan gedung untuk mengetahui tingkat keandalan sebagai dasar awal pertimbangan lebih lanjut dalam Sertifikat menerbitkan Laik Fungsi bangunan gedung oleh Pemerintah Daerah.

Diharapkan dengan kegiatan pemeriksaan ini, pemerintah daerah akan secara bertahap melaksanakan program sejenis, serta mampu menumbuh kembangkan partisipasi masyarakat bangunan gedung dalam hal mewujudkan kelaikan fungsi bangunan gedung.

TINJAUAN PUSTAKA

Menurut Peraturan Menteri Pekerjaan Umum No. 29/PRT/2006 bahwa persyaratan tata bangunan meliputi persyaratan peruntukan dan intensitas bangunan gedung, arsitektur bangunan gedung, dan persyaratan pengendalian dampak lingkungan.

Persyaratan peruntukan merupakan persyaratan peruntukan lokasi yang bersangkutan sesuai dengan RTRW kabupaten/kota, RDTRKP, dan/atau RTBL.

1. Arsitektur Bangunan Gedung

Persyaratan arsitektur bangunan gedung meliputi :

- o Persyaratan penampilan bangunan gedung,
- o Tata ruang-dalam,
- Keseimbangan, keserasian, dan keselarasan bangunan gedung dengan lingkungannya,
- Keseimbangan antara nilai-nilai sosial budaya setempat terhadap penerapan berbagai perkembangan arsitektur dan rekayasa.

Penampilan bangunan gedung harus dirancang dengan mempertimbangkan kaidah-kaidah estetika bentuk, karakteristik arsitektur, dan lingkungan yang ada di sekitarnya. Penampilan bangunan gedung di kawasan cagar budaya, harus dirancang mempertimbangkan dengan kaidah pelestarian. Penampilan bangunan gedung didirikan berdampingan bangunan gedung yang dilestarikan, harus dirancang dengan mempertimbangkan kaidah estetikabentuk dan karakteristik dari arsitektur bangunan gedung yang dilestarikan.

Pemerintah daerah dapat menetapkan kaidah-kaidah arsitektur tertentu pada bangunan gedung untuk suatu kawasan setelah mendapat pertimbangan teknis tim ahli bangunan gedung, dan mempertimbangkan pendapat publik.

Tata ruang dalam, harus mempertimbangkan fungsi ruang, arsitektur bangunan gedung, dan keandalan bangunan gedung.

Keseimbangan, keserasian, dan keselarasan bangunan gedung dengan lingkungannya harus mempertimbangkan terciptanya ruang luar bangunan gedung, ruang terbuka hijau yang seimbang, serasi, dan selaras dengan lingkungannya.

2. Persyaratan Pengendalian Dampak Lingkungan

Penerapan persyaratan pengendalian dampak lingkungan hanya berlaku bagi bangunan gedung yang dapat menimbulkan dampak penting terhadap lingkungan. Setiap mendirikan bangunan gedung yang menimbulkan dampak penting, harus didahului dengan menyertakan analisis mengenai dampak lingkungan sesuai peraturan perundang-undangan mengenai pengelolaan lingkungan hidup.

Gambar 1. Skema Persyaratan Gedung

EMDA sesuai kondisi sosial, dan budaya setempat

3. Persyaratan Keandalan Bangunan Gedung

Keandalan Bangunan Gedung menurut Peraturan Menteri Pekerjaan Umum No. 29/PRT/2006 tentang Pedoman Persyaratan Teknis Bangunan Gedung adalah keadaan bangunan gedung yang memenuhi persyaratan:

- Keselamatan,
- Kesehatan,
- Kenyamanan,
- Kemudahan

4. Persyaratan keselamatan

Meliputi persyaratan kemampuan bangunan gedung untuk mendukung beban muatan, serta kemampuan bangunan gedung dalam mencegah dan menanggulangi bahaya kebakaran dan bahaya petir

a. Ketahanan Struktur.

Setiap bangunan gedung, direncanakan strukturnya harus kuat, kokoh, dan stabil dalam memikul beban/kombinasi beban dan memenuhi persyaratan kelayanan (serviceability) selama umur layanan yang direncanakan dengan mempertimbangkan fungsi bangunan gedung, lokasi, keawetan, kemungkinan dan pelaksanaan konstruksinva. Kemampuan memikul beban diperhitungkan terhadap pengaruh-pengaruh aksi sebagai akibat dari beban-beban mungkin bekerja selama umur layanan struktur, baik beban muatan tetap maupun beban muatan sementara yang timbul akibat dan angin. Dalam gempa perencanaan struktur bangunan gedung terhadap pengaruh gempa, semua unsur struktur bangunan gedung, baik bagian dari sub struktur maupun struktur gedung, harus diperhitungkan memikul pengaruh gempa rencana sesuai dengan zona gempanya.

Struktur bangunan gedung harus direncanakan secara detail sehingga pada kondisi pembebanan maksimum yang direncanakan, apabila terjadi keruntuhan kondisi strukturnya masih dapat memungkinkan pengguna bangunan gedung menyelamatkan diri.

b. Proteksi Bahaya Kebakaran

Bangunan gedung, kecuali rumah tinggal tunggal dan rumah deret sederhana, harus dilindungi terhadap bahaya kebakaran dengan sistem proteksi pasif dan proteksi aktif.

Penerapan sistem proteksi pasif didasarkan pada fungsi / klasifikasi risiko kebakaran, geometri ruang, bahan bangunan terpasang, dan/atau jumlah dan kondisi penghuni dalam bangunan gedung, sistem proteksi aktif didasarkan pada fungsi, klasifikasi, luas, ketinggian, volume bangunan, dan/atau dalam bangunan gedung.

c. Proteksi Penangkal Petir

Setiap bangunan gedung berdasarkan letak, sifat geografis, bentuk, ketinggian, dan penggunaannya berisiko terkena sambaran petir harus dilengkapi instalasi penangkal petir.

Sistem penangkal petir yang dirancang dan dipasang harus dapat mengurangi secara nyata risiko kerusakan yang disebabkan sambaran petir terhadap bangunan gedung dan peralatan yang diproteksinya, serta melindungi manusia di dalamnya.

d. Instalasi Listrik

Setiap bangunan gedung yang dilengkapi dengan instalasi listrik termasuk sumber daya listriknya harus dijamin aman, andal, dan akrab lingkungan.

e. Bahan Peledak

Setiap bangunan gedung yang dilengkapi dengan pendeteksi bahan peledak termasuk sumber penangkalnya harus dijamin aman, andal, dan akrab lingkungan.

5. Persyaratan kesehatan

Persyaratan kesehatan bangunan gedung meliputi persyaratan sistem penghawaan, pencahayaan, sanitasi, dan penggunaan bahan bangunan gedung.

a. Penghawaan

Bangunan gedung untuk memenuhi persyaratan sistem penghawaan harus mempunyai ventilasi alami dan/atau ventilasi mekanik/buatan sesuai dengan fungsinya.

b. Pencahayaan

Setiap bangunan gedung untuk memenuhi persyaratan sistem pencahayaan harus mempunyai pencahayaan alami dan/atau pencahayaan buatan, termasuk pencahayaan darurat sesuai dengan fungsinya.

c. Sanitasi

Setiap bangunan gedung untuk memenuhi persyaratan sistem sanitasi harus dilengkapi dengan sistem air bersih, sistem pembuangan air kotor dan/atau air limbah, kotoran dan sampah, serta penyaluran air hujan.

d. Penggunaan Bahan

Penggunaan bahan bangunan gedung sebagaimana dimaksud harus aman bagi kesehatan pengguna bangunan gedung dan tidak menimbulkan dampak negatif lingkungan. terhadap Ketentuan mengenai penggunaan bahan bangunan gedung diatur lebih lanjut dengan Peraturan Pemerintah.

6. Persyaratan Kenyamanan

Persyaratan kenyamanan bangunan gedung meliputi kenyamanan ruang gerak dan hubungan antar ruang, kondisi udara dalam ruang, pandangan, serta tingkat getaran dan tingkat kebisingan.

a. Kenyamanan Ruang Gerak dan Hubungan Antar Ruang

Merupakan tingkat kenyamanan yang diperoleh dari dimensi ruang letak ruang dan tata yang memberikan kenyamanan bergerak ruangan. Kenyamanan hubungan antar ruang merupakan tingkat kenyamanan yang diperoleh dari tata letak ruang dan sirkulasi ruang dalam bangunan gedung untuk terselenggaranya fungsi bangunan.

b. Kondisi Udara Dalam Ruang

Kenyamanan kondisi udara dalam ruang merupakan tingkat kenyamanan yang diperoleh dari temperature dan kelembaban di dalam ruang untuk terselenggaranya fungsi bangunan gedung.

c. Pandangan

Kenyamanan adalah pandangan sebagaimana merupakan kondisi dimana hak pribadi orang dalam melaksanakan kegiatan di dalam bangunan gedungnya tidak terganggu dari bangunan gedung lain di sekitarnya.

d. Tingkat Getaran dan Tingkat Kebisingan

Kenyamanan tingkat getaran dan kebisingan sebagaimana dimaksud merupakan tingkat kenyamanan yang ditentukan oleh suatu keadaan yang tidak mengakibatkan pengguna dan fungsi bangunan gedung terganggu oleh getaran dan/atau kebisingan yang timbul baik dari dalam bangunan gedung maupun lingkungannya.

7. Persyaratan Kemudahan

Persyaratan adalah kemudahan sebagaimana dimaksud dalam Pasal 31 meliputi kemudahan hubungan ke, dari, dan di dalam bangunan gedung, serta kelengkapan prasarana dan sarana dalam pemanfaatan bangunan gedung.

Kemudahan hubungan ke, dari, dan di dalam bangunan gedung meliputi tersedianya fasilitas dan aksesibilitas yang mudah, aman, dan nyaman termasuk bagi penyandang cacat dan lanjut usia.

Kelengkapan prasarana dan sarana pada bangunan gedung untuk kepentingan umum meliputi penyediaan fasilitas yang cukup untuk ruang ibadah, ruang ganti, ruangan bayi, toilet, tempat parker, tempat sampah, serta fasilitas komunikasi dan informasi.

a. Kemudahan Hubungan Horisontal

Kemudahan hubungan horizontal antar ruang dalam bangunan gedung merupakan keharusan bangunan gedung untuk menyediakan pintu dan/atau koridor antar ruang.

Penyediaan mengenai jumlah, ukuran dan konstruksi teknis pintu dan koridor disesuaikan dengan fungsi ruang bangunan gedung.

b. Kemudahan Hubungan Vertikal

Kemudahan hubungan vertical dalam bangunan gedung, termasuk sarana transportasi vertical berupa penyediaan tangga, ram, sejenisnya serta lift dan/atau tangga berjalan dalam bangunan gedung. Bangunan gedung yang bertingkat harus menyediakan tangga yang menghubungkan lantai yang satu dengan yang lainnya dengan mempertimbangkan kemudahan, keamanan, keselamatan, dan kesehatan pengguna.

Bangunan gedung untuk parkir harus menyediakan ram dengan kemiringan tertentu dan/atau sarana akses vertical lainnya dengan mempertimbangkan kemudahan dan keamanan pengguna sesuai standar teknis yang berlaku.

Bangunan gedung dengan jumlah lantai lebih dari 5 (lima) harus dilengkapi dengan sarana transportasi vertical (lift) yang dipasang sesuai dengan kebutuhan dan fungsi bangunan gedung.

c. Akses Evakuasi Dalam Keadaan Darurat Kebakaran

Akses evakuasi dalam keadaan darurat harus disediakan di dalam bangunan gedung meliputi sistem peringatan bahaya bagi pengguna, pintu keluar darurat, dan jalur evakuasi apabila terjadi bencana kebakaran dan/atau bencana lainnya, kecuali rumah tinggal.

Penyediaan akses evakuasi harus dapat dicapai dengan mudah dan dilengkapi dengan penunjuk arah yang jelas.

d. Fasilitas dan Aksesbilitas Bagi Penyandang Cacat

Penyediaan fasilitas dan aksesbilitas bagi penyandang cacat dan lanjut usia sebagaimana merupakan keharusan bagi semua bangunan gedung kecuali rumah tinggal (Keputusan Menteri PU No.30/KPTS/2006 tentang Persyaratan Teknis Fasilitas dan Aksesibilitas Bangunan Umum dan Lingkungan).

PEMBAHASAN

Pengambilan data melalui pengamatan visual dan pengukuran terhadap besaran komponen keandalan bangunan, yang kemudian hasil tersebut diproses secara skala rating. Angka-angka pengamatan tersebut dimasukkan dalam format isian keandalan bangunan gedung keluaran Dirjen Cipta Karya untuk mengetahui nilai keandalan dari bangunan yang diperiksa.

Proses interpretasi ini merupakan hasil yang menyatakan apakah suatu bangunan tersebut dapat dikatakan andal, kurang andal atau tidak andal. Format isian merupakan acuan dalam menentukan tingkat keandalan.

Hasil dari interpretasi pemeriksaan keandalan bangunan gedung terhadap bangunan yang diperiksa oleh tim peneliti kepada pemilik bangunan gedung yang diperiksa dapat dirangkum sebagai berikut :

A. Gedung Fakultas Teknik Universitas Negeri Gorontalo

Berdasarkan hasil pembobotan komponen yang telah dinilai pada interpretasi, maka nilai keandalan bangunan gedung Fakultas Teknik Universitas Negeri Gorontalo masuk dalam kategori KURANG ANDAL, dengan rincian penilaian dari tiaptiap komponen yang dinilai dapat dilihat pada Tabel. 1.

Penilaian dilakukan dengan cara pengisian nilai/angka. Nilai ini didasarkan pada standar bobot maksimal yang ada. Hasil pengamatan di lapangan, ada beberapa komponen yang diberi bobot kurang dari nilai keandalannya, sehingga secara akumulasi dinilai kurang andal.

Tingkat kerusakan/kekurangan seluruh komponen dari hasil penilaian tersebut didominasi oleh komponen utilitas dan aksesibilitas, hal ini disebabkan bukan karena tidak adanya saluran pembuangan dan instalasi air bersih tetapi karena adanya beberapa komponen yang tidak terpasang dengan benar, bahan material yang tidak sesuai standar, banyaknya komponen utilitas yang tidak berfungsi dan beberapa komponen yang tidak lengkap.

B. Gedung Fakultas Ilmu Pendidikan Universitas Negeri Gorontalo

Berdasarkan hasil pembobotan komponen telah dinilai pada yang interpretasi, maka nilai keandalan bangunan Fakultas gedung Ilmii Pendidikan Universitas Negeri Gorontalo masuk dalam KURANG ANDAL, dengan rincian penilaian dari tiap-tiap komponen yang dinilai dapat dilihat pada Tabel. 1.

Penilaian dilakukan dengan cara pengisian nilai/angka. Nilai ini didasarkan pada standar bobot maksimal yang ada. Hasil pengamatan di lapangan, ada beberapa komponen yang diberi bobot kurang dari nilai keandalannya, sehingga secara akumulasi dinilai kurang andal.

Tingkat kerusakan/kekurangan seluruh komponen dari hasil penilaian tersebut didominasi oleh komponen utilitas dan struktur, hal ini disebabkan bukan karena tidak adanya saluran pembuangan dan instalasi air bersih tetapi karena adanya beberapa komponen yang tidak terpasang dengan benar, bahan material yang tidak sesuai standar, banyaknya komponen utilitas tidak berfungsi yang dan beberapa komponen yang tidak lengkap serta bukan karena tidak kokohnya struktur yang ada tetapi adanya beberapa komponen yang mengalami keretakan disebabkan campuran bahan yang tidak sesuai standar.

C. Gedung Perpustakaan Pusat Universitas Negeri Gorontalo

Berdasarkan hasil pembobotan komponen telah dinilai pada yang interpretasi, maka nilai keandalan bangunan gedung Perpustakaan Pusat Universitas Negeri Gorontalo masuk dalam kategori KURANG ANDAL, dengan penilaian dari tiap-tiap komponen yang dinilai dapat dilihat pada Tabel. 1.

Penilaian dilakukan dengan cara pengisian nilai/angka. Nilai ini didasarkan pada standar bobot maksimal yang ada. Hasil pengamatan di lapangan, ada beberapa komponen yang diberi bobot kurang dari nilai keandalannya, sehingga secara akumulasi dinilai kurang andal.

Tingkat kerusakan/kekurangan seluruh komponen dari hasil penilaian tersebut didominasi oleh komponen utilitas dan struktur, hal ini disebabkan bukan karena tidak adanya saluran pembuangan dan instalasi air bersih tetapi karena adanya beberapa komponen yang tidak terpasang dengan benar, bahan material yang tidak sesuai standar, banyaknya komponen utilitas yang tidak berfungsi dan beberapa komponen yang tidak lengkap.

D. Gedung Pasca Sarjana Universitas Negeri Gorontalo

Berdasarkan hasil pembobotan komponen yang telah dinilai pada interpretasi, maka nilai keandalan bangunan gedung Fakultas Pasca Sarjana Universitas Negeri Gorontalo masuk dalam kategori ANDAL. KURANG dengan rincian penilaian dari tiap-tiap komponen yang dinilai dapat dilihat pada Tabel. 1.

Penilaian dilakukan dengan cara pengisian nilai/angka. Nilai ini didasarkan pada standar bobot maksimal yang ada. Hasil pengamatan di lapangan, ada beberapa komponen yang diberi bobot kurang dari nilai keandalannya, sehingga secara akumulasi dinilai kurang andal.

Tingkat kerusakan/kekurangan seluruh komponen dari hasil penilaian tersebut didominasi oleh komponen utilitas dan struktur, hal ini disebabkan bukan karena tidak adanya saluran pembuangan dan instalasi air bersih tetapi karena adanya beberapa komponen yang tidak terpasang dengan benar, bahan material yang tidak sesuai standar, banyaknya komponen utilitas tidak berfungsi dan beberapa vang komponen yang tidak lengkap perencanaan ruang yang tidak sesuai dengan perencanaan awal.

E. Gedung Fakultas Sastra dan Budaya Universitas Negeri Gorontalo

Berdasarkan hasil pembobotan komponen yang telah dinilai pada interpretasi, maka nilai keandalan bangunan gedung Fakultas Sastra dan Budaya Universitas Negeri Gorontalo masuk dalam kategori **KURANG ANDAL**, dengan rincian penilaian dari tiap-tiap komponen yang dinilai dapat dilihat pada Tabel. 1.

Penilaian dilakukan dengan cara pengisian nilai/angka. Nilai ini didasarkan pada standar bobot maksimal yang ada. Hasil pengamatan di lapangan, ada beberapa komponen yang diberi bobot kurang dari nilai keandalannya, sehingga secara akumulasi dinilai kurang andal.

Tingkat kerusakan/kekurangan seluruh komponen dari hasil penilaian tersebut didominasi oleh komponen utilitas dan struktur, hal ini disebabkan bukan karena tidak adanya saluran pembuangan dan instalasi air bersih tetapi karena adanya beberapa komponen yang tidak terpasang dengan benar, bahan material yang tidak sesuai standar, banyaknya komponen utilitas yang tidak berfungsi dan beberapa komponen yang tidak lengkap.

F. Gedung Kuliah Teknik Elektro Universitas Negeri Gorontalo

Berdasarkan hasil pembobotan komponen telah dinilai yang pada interpretasi, maka nilai keandalan bangunan gedung Kuliah Teknik Elektro Universitas Negeri Gorontalo masuk dalam kategori ANDAL. KURANG dengan rincian penilaian dari tiap-tiap komponen yang dinilai dapat dilihat pada Tabel. 1.

Penilaian dilakukan dengan cara pengisian nilai/angka. Nilai ini didasarkan pada standar bobot maksimal yang ada. Hasil pengamatan di lapangan, ada beberapa komponen yang diberi bobot kurang dari nilai keandalannya, sehingga secara akumulasi dinilai kurang andal.

Tingkat kerusakan/kekurangan seluruh komponen dari hasil penilaian tersebut didominasi oleh komponen utilitas dan struktur, hal ini disebabkan bukan karena tidak adanya saluran pembuangan dan instalasi air bersih tetapi karena adanya beberapa komponen yang tidak terpasang dengan benar, bahan material yang tidak sesuai standar, banyaknya komponen utilitas berfungsi vang tidak dan beberapa komponen yang tidak lengkap

perencanaan ruang yang tidak sesuai dengan perencanaan awal.

G. Gedung Kuliah Fakultas Teknik Universitas Negeri Gorontalo

Berdasarkan hasil pembobotan komponen yang telah dinilai pada interpretasi, maka nilai keandalan bangunan gedung Kuliah Fakultas Teknik Universitas Negeri Gorontalo masuk dalam kategori KURANG ANDAL, dengan rincian penilaian dari tiap-tiap komponen yang dinilai dapat dilihat pada Tabel. 1.

Penilaian dilakukan dengan cara pengisian nilai/angka. Nilai ini didasarkan pada standar bobot maksimal yang ada. Hasil pengamatan di lapangan, ada beberapa komponen yang diberi bobot kurang dari nilai keandalannya, sehingga secara akumulasi dinilai kurang andal.

Tingkat kerusakan/kekurangan seluruh komponen dari hasil penilaian tersebut didominasi oleh komponen utilitas dan struktur, hal ini disebabkan bukan karena tidak adanya saluran pembuangan dan instalasi air bersih tetapi karena adanya beberapa komponen yang tidak terpasang dengan benar, bahan material yang tidak sesuai standar, banyaknya komponen utilitas yang tidak berfungsi.

H. Gedung Kuliah dan Labotarium Teknik Sipil Universitas Negeri Gorontalo

Berdasarkan hasil pembobotan komponen yang telah dinilai pada interpretasi, maka nilai keandalan bangunan gedung Kuliah dan Labotarium Teknik Teknik Sipil Universitas Negeri Gorontalo masuk dalam kategori KURANG ANDAL, dengan rincian penilaian dari tiap-tiap komponen yang dinilai dapat dilihat pada Tabel. 1.

Penilaian dilakukan dengan cara pengisian nilai/angka. Nilai ini didasarkan pada standar bobot maksimal yang ada. Hasil pengamatan di lapangan, ada beberapa komponen yang diberi bobot kurang dari nilai keandalannya, sehingga secara akumulasi dinilai kurang andal.

Tingkat kerusakan/kekurangan seluruh komponen dari hasil penilaian tersebut didominasi oleh komponen utilitas dan struktur, hal ini disebabkan bukan karena tidak adanya saluran pembuangan dan instalasi air bersih tetapi karena adanya beberapa komponen yang tidak terpasang dengan benar, bahan material yang tidak sesuai standar, banyaknya komponen utilitas yang tidak berfungsi dan beberapa komponen yang tidak lengkap.

Tabel 1. Rincian Komponen Penilain Bangunan Gedung Pada Bangunan Gedung di Universitas Negeri Gorontalo

	Komponen	BANGUNAN GEDUNG UNIVERSITAS NEGERI GORONTALO																	
No		Fakultas Teknik			Fakultas Ilmu Pendidikan		Perpustakaan Pusat		Pasca Sarjana		Fakultas Sastra Dan Budaya		Kuliah Teknik Elektro		Kuliah Fakultas Teknik		Kuliah Dan Labotarium Teknik Industri		Labotarium Teknik Sipil
		Nilai	Katego ri	Nilai	Katego ri	Nilai	Katego ri	Nilai	Katego ri	Nilai	Katego ri	Nilai	Katego ri	Nilai	Katego ri	Nilai	Katego ri	Nila i	Katego ri
1	ARSITEKTUR	98,8	Andal	97,8 2	Andal	96,9 7	Andal	97,6 8	Andal	98,2	Andal	91,2	Kurang Andal	87,4 2	Kurang Andal	87,4 2	Kurang Andal	88,0 6	Kurang Andal
2	STRUKTUR	99,4 9	Andal	100	Andal	99,6 2	Andal	99,5 8	Andal	99,3 7	Andal	99,2	Andal	99,4 5	Andal	99,4 5	Andal	99,1 6	Andal
3	UTILITAS	83,6 9	Tidak Andal	79,1	Tidak Andal	87,5	Tidak Andal	80,0 7	Tidak Andal	83,6 8	Tidak Andal	77,5 4	Tidak Andal	66,1 5	Tidak Andal	66,1 5	Tidak Andal	50,1	Tidak Andal
4	AKSESIBILITAS	95,5 6	Andal	95,6 8	Andal	97,2 2	Andal	91,9	Kurang Andal	92,6 6	Kurang Andal	88,7 6	Kurang Andal	80,5 6	Kurang Andal	80,5 6	Kurang Andal	76,8	Kurang Andal
5	TATA LINGKUNGAN	100	Andal	100	Andal	100	Andal	100	Andal	100	Andal	100	Andal	100	Andal	100	Andal	100	Andal

KESIMPULAN

- interpretasi merupakan 1. Hasil hasil normatif sementara dapat yang dijadikan acuan terhadap tingkat keandalan bangunan gedung pada taraf pengamatan visual. Jika terdapat bangunan yang berada pada kondisi sangat parah atau mengalami kerusakan berat (colaps), maka akan ditindaklanjuti pada proses pemeriksaan lanjutan yang lebih spesifik (full and specific investigation).
- 2. Berdasarkan hasil pembobotan komponen yang telah dinilai pada interpretasi, maka nilai keandalan bangunan untuk bangunan vang diperiksa akan keandalan bangunannya termasuk dalam kategori kurang andal, mana tingkat yang kerusakan/kekurangan seluruh komponen dari hasil penilaian tersebut didominasi oleh komponen utilitas dan aksessibilitas. Dari hasil interpretasi memberikan beberapa jenis, teknik dan metode perbaikan untuk bangunan gedung yang diperiksa akan keandalan bangunan gedung. Jenis perbaikan komponen terdiri dari:
 - Perbaikan arsitektur (repair) adalah Tujuannya untuk memperbaiki bentuk arsitektur bangunan agar semua perlengkapan/peralatan dapat berfungsi kembali. Tindakantindakan yang merupakan jenis ini adalah:
 - Menambal retak-retak pada tembok, plesteran.
 - Memperbaiki pintu-pintu, jendela, mengganti kaca.
 - 3) Memperbaiki dan merapihkan kabel-kabel listrik.
 - 4) Memperbaiki pipa-pipa air, pipa AC, saluran pembuangan.
 - Memplester kembali dindingdinding.
 - 6) Mengatur kembali gentenggenteng (penutup atap), seng.

- 7) Memperbaiki rangka langit-langit dan plafond
- 8) Mengecat ulang.
- b. Restorasi (restoration)

Tindakan ini bertujuan untuk memperbaiki elemen-elemen pada bagian struktur, antara lain adalah :

- Menginjeksi bahan-bahan semen atau bahan-bahan epoxy ke dalam retak-retak kecil yang terjadi pada dinding pemikul beban balok maupun kolom. Retak kecil adalah retak yang mempunyai celah 0,075 dan 0,6 cm.
- Penambahan jaringan tulangan pada dinding pemikul, balok maupun kolom yang mengalami retak besar kemudian di plester kembali. Retak besar adalah retak yang mempunyai lebar celah lebih besar dari 0.6 cm.
- 3) Membongkar bagian-bagian dinding yang terbelah dan menggantikannya dengan dinding baru dengan spesi yang lebih kuat dan dijangkar pada portal.

Teknik restorasi pada dinding, antara lain:

- Untuk retak yang tidak dalam dilakukan pengisian bagian yang retak dengan adukan semen.
- Untuk retak yang dalam digunakan jaringan kawat ayam pada bagian yang retak.

Teknik restorasi pada kolom dan balok, antara lain :

- Untuk retak sedang, pada bagian yang rusak dibobok dan dibersihkan, setelah itu di cor kembali.
- Untuk retak berat, kolom yang berdasarkan pengamatan berkurang kekuatannya dibobok kembali dan dibungkus dengan tulangan dan sengkang kemudian di cor kembali.
- c. Perkuatan (strengthening)

Tindakan ini meningkatkan kekuatan struktur dari kekuatan semula. Tindakan-tindakan yang termasuk jenis ini adalah :

- Menambah daya tahan terhadap beban lateral dengan jalan menambah kolom, menambah dinding.
- Menjadikan bangunan sebagai satu kesatuan dengan jalan mengikat semua unsur penahan beban satu dengan lainnya.
- Menghilangkan sumber-sumber kelemahan atau yang dapat menyebabkan terjadinya konsentrasi tegangan pada bagian-bagian tertentu.
- Menghindarkan terjadinya kehancuran getas dengan cara memasang tulangan sesuai dengan detail-detail untuk mencapai daktilitas yang cukup.

UCAPAN TERIMA KASIH

Pada kesempatan ini pula peneliti menyampaikan terima kasih banyak kepada:

- Satuan kerja Pembinaan Teknis Bangunan Gedung, Kementrian Pekerjaan Umum, Direktorat Jenderal Cipta Karya Provinsi Gorontalo.
- Bapak Dr. Syamsu Qamar Badu, M.Pd selaku Rektor Universitas Negeri Gorontalo.

CATATAN AKHIR

Sebagaimana yang telah diuraikan sebelumnya, bahwa langkah rekomendasi yang diberikan antara lain :

a) Pemeriksaan Berkala Pemeriksaan berkala merupakan tindakan yang direkomendasikan untuk memantau kondisi komponenkomponen bangunan gedung agar dapat di deteksi lebih dini kemungkinan-kemungkinan terjadinya kerusakan pada konponen bangunan.

- b) Perawatan/Pemeliharaan Berkala Perawatan dan pemeliharaan berkala merupakan tindakan vang direkomendasikan untuk mempertahankan fisik kondisi komponen-komponen agar danat berfungsi dengan baik. Selain itu, tindakan ini dapat mempertahankan umur komponen-komponen yang ada. Misalnya perawatan pada instalasi pemipaan, penkabelan, penutup atap, saluran air dan sebagainya.
- c) Perawatan dan Perbaikan Berkala Perawatan dan perbaikan berkala direkomendasikan untuk kondisi komponen yang memiliki rawan kerusakan. terjadi mengalami Misalnya pada instalasi pengkabelan, pemipaan, saluran air, plesteran dinding, pelapis dinding, pelapis lantai dan pelapis langit-langit dan sebagainya.
- d) Penyetelan dan Perbaikan Elemen Tindakan ini direkomendasikan untuk kondisi komponen yang sudah mengalami kerusakan baik tingkat kerusakan ringan, sedang, berat maupun kerusakan total.
- e) Melengkapi Komponen yang Kurang Tindakan ini dilakukan melengkapi komponen yang hilang, rusak dari suatu rangkaian komponen yang seharusnya. Misalnya pada instalasi air ada pipa yang terlepas, rusak atau hilang. Atau pada terdapat struktur komponen kekurangan dapat yang mempengaruhi kekuatan struktur.
- f) Pemeriksaan Lanjutan
 Pemeriksaan lanjutan
 direkomendasikan untuk pengamatan
 yang mendapatkan tanda-tanda
 kerusakan berat atau yang mengarah
 ke kerusakan berat yang dapat
 membahayakan pengguna bangunan.
 Pemeriksaan ini dilakukan oleh

tenaga khusus terhadap kerusakan yang lebih spesifik, atau dilakukan oleh lembaga yang berkompotan terhadap investigasi ini.

DAFTAR PUSTAKA

- Direktorat Penataan Bangunan dan Lingkungan Direktorat Jenderal Cipta Karya Kementrian Pekerjaan Umum. 2008. Peraturan Menteri Pekerjaan No. 24/PRT/M/2008 Tentang Umum Pedoman Pemeliharaan Dan Perawatan Bangunan Gedung. Kementrian Pekerjaan Umum
- Direktorat Penataan Bangunan dan Lingkungan Direktorat Jenderal Cipta Karya Kementrian Pekerjaan Umum. 2008. Peraturan Menteri Pekerjaan Umum No.26/PRT/M/2008 Tentang Persyaratan Teknis Sistem Proteksi Kebakaran Pada Bangunan Gedung Dan Lingkungan . Kementrian Pekerjaan Umum
- Direktorat Penataan Bangunan dan Lingkungan Direktorat Jenderal Cipta Karya Kementrian Pekerjaan Umum. 2006. Peraturan Menteri Pekerjaan Umum No.29/PRT/2006 Tentang Pedoman Persyaratan Teknis Bangunan Gedung. Kementrian Pekerjaan Umum
- Direktorat Penataan Bangunan dan Lingkungan Direktorat Jenderal Cipta Karya Kementrian Pekerjaan Umum. 2006. Keputusan Menteri Pekerjaan Umum No. 30/KPTS/2006 Tentang Persyaratan Teknis Fasilitas dan Aksesibilitas Pada Bangunan Umum dan Lingkungan. Kementrian Pekerjaan Umum
- Hartono. Utilitas Bangunan, Jambatan, 1992
- Martohardjono, Sutoyo. Petunjuk Teknis Pelaksanaan/Pengawasan Pekerjaan Pelaksana Konstruksi Untuk Bangunan Komersil dan Umum, Buck Professional Training Institute, 2000
- Neufert, Ernst. Data Arsitektur I dan II, Erlangga, 1994

- Peraturan Pemerintah No. 36 Tahun 2005 tentang Peraturan Pelaksanaan Undang-undang No. 28 Tahun 2002 tentang Bangunan Gedung, Kementrian Pekerjaan Umum
- Ramsey, Charles G, dan Sleeper, Harlord R. Architecture Graphic Standards, John Wiley & Sons, 2000
- Sutedjo, Suwondo. *Pencerminan Nilai Budaya Dalam Arsitektur di Indonesia*,
 Fakultas Teknik Universitas Indonesia,
 1985
- Sutedjo, Suwondo. *Peran Kesan dan Pesan Bentuk-bentuk Arsitektur*, Fakultas Teknik Universitas Indonesia, 1985
- Suptandar, Pamudji. Arti Pencahayaan Bagi Arsitek dan Disainer, Universitas Trisakti, Jakarta, 1996
- Undang-undang Republik Indonesia No.28 Tahun 2002 tentang *Bangunan Gedung*
- Weking, G Bie. *Ilmu Bangunan Gedung*, Ars Group Bandung, 1992